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This research studies the strong nonlinear rupture phenomena of a thin liquid film on a horizontal plane. The
strong nonlinear evolution equations are obtained by the Ka´rmán-Polhausen integral method with a specified
velocity profile. These evolution equations are used to investigate the rupture process for liquid films. The
numerical results show that although the inertia accelerates the rupture process explicitly, the high-order
viscous dissipation reduces this acceleration.@S1063-651X~96!04709-5#

PACS number~s!: 66.60.1a, 68.15.1e, 02.60.Cb, 02.70.Bf

Research of the rupture of a thin liquid film has been
motivated by industrial applications in disperse and, colloid
systems on the one hand, and an understanding of diverse
biological implications on the other@1–3#. A liquid layer on
a solid substrate may be unstable when the thickness of the
layer becomes very thin~100–1000 Å!. To explain the
mechanism of the instability of a thin liquid film, Sheludko
@4# proposed an idea of the negative disjoining pressure in-
duced by the long-range molecular forces due to the van der
Waals potential~VDWP!. In the case of a thin film on a solid
substrate, the critical wavelength and the linear rupture time
of the thin film, which are related to the surface tension and
the van der Waals potential, can be obtained by the hydro-
dynamic stability theory@5–7#. Williams and Davis@8#, Bu-
relbachet al. @9# and Hwanget al. @10# analyzed the long-
wave nonlinear dynamic rupture of film on a plate. They
found that the nonlinearity accelerates the rupture process.
Furthermore, Chen and Hwang@11# indicated that the inertial
effect of the longitudinal momentum equation accelerated
the rupture process explicitly.

In the research mentioned above, some high-order terms
in the governing equations and the boundary conditions are
neglected. However, these terms are explicit during the
strong nonlinear period of the rupture process@10#. In the
present work, the order of magnitude of each physical effect
is estimated and the reduced governing equations are ob-
tained. Sequentially, the integral method@12,13# is used to
derive a system of strong nonlinear evolution equations.
Then the numerical results of the evolution equations are
compared with the Williams and Davis’s equations~WDE!
@10# and Chen and Hwang’s equations~CHE! @11#.

A planar thin liquid film on a horizontal plane is shown
schematically in Fig. 1. The liquid is assumed to be a New-
tonian viscous fluid with kinematic viscosityn and constant
densityr. It is also assumed that the liquid film discussed
here is thin enough to neglect the gravity effect and only the
effect of VDWP is considered. By scaling the coordinate by
the equilibrium thicknessh0, time byh0

2/n, velocity byn/h0,
and pressure byrn2/h0

2, the modified Navier-Stokes equa-
tions are given by@7#

ut1uux1wuz52px2fx1uxx1uzz, ~1!

wt1uwx1wwz52pz2fz1wxx1wzz, ~2!

ux1wz50, ~3!

simultaneously with the boundary conditions:
at z5h,

~uz1wx!24uxhx~12hx
2!2150, ~4!

2p12@~12hx
2!wz2hx~uz1wx!#~11hx

2!21

53Shxx~11hx
2!23/2; ~5!

at z50,

u5w50, ~6!

and also with the kinematic condition at the free surface
given by

ht1uhx5w, ~7!

whereu, w, and p are the dimensionlessx-component ve-
locity, thez-component velocity, and pressure, respectively,
and the subscripts represent partial derivatives. The attractive
van der Waals forces are obtained through the potential func-
tionf, which depends on the film thickness asf5Ah23. The
dimensionless parametersA and S are defined as

FIG. 1. The physical model of a thin liquid film.
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A5A8/(6ph0rn2) andS5h0s/(3rn2), whereA8 is the di-
mensional Hamaker constant, ands is the dimensional sur-
face tension.

After solving the linear stability problem of Eqs.~1!–~7!
~please refer to the Appendix for details!, one can find the
neutral state of the system that occurs at the cutoff wave
number as

kc5SASD /12. ~8!

It is clear that only disturbances with wave numbers below
the cutoff wave number are unstable. Since the real orders of
magnitude ofA andS are small@8,9#, some high-order terms
in the governing equations and the boundary conditions must
be concluded in the reduced system in which we expect to
takeA andS into consideration. We assume that the order of
magnitude ofA andS areS5O(e) andA5O(e4), wheree
is a relatively small parameter. Introducing the above two
dimensionless parameters into Eq.~9!, the order of unstable
wave numberk can be represented as

k5O~e3/2!. ~9!

The orders of other dimensionless variables are given by
@8,9#

u5O~1!, w5O~k!, p5O~k21!,

x5O~k21!, z5O~1!, t5O~k21!. ~10!

Introducing Eqs.~9! and ~10! into Eqs.~1!–~7! and neglect-
ing the higher terms of order higher thanO~e6!, the reduced
equations of motion and the pertinent boundary conditions
can be derived as follows:

ut1uux1wuz52px2fx1uxx1uzz, ~11!

wt1uwx1wwz52pz1wzz, ~12!

ux1wz50; ~13!

at z5h,

uz54uxhx2wx , ~14!

2p23Shxx52ux12uzhx , ~15!

ht1uhx5w; ~16!

and atz50

u5w50. ~17!

The high-order viscous dissipation terms are the normal
stress in x-momentum equations, shear stress in
z-momentum equations, and the interfacial shear and normal
stress on the right-hand side of the dynamic boundary con-
ditions @~14! and ~15!# that are caused by a large interface
deformation. The above high-order terms become important
as the rupture process reaches the nonlinear stage.

One can obtain the mass balance relationship by rewriting
Eq. ~16! as

ht1
]

]x E0
h

udz5ht1qx50, ~18!

where q is the local flow rate. A specific profile must be
imposed in the integral method. For a highly turbulent flow,
a flat profile is usually assumed. However, for the flow of
interest here, a parabolic profile established experimentally
by Alekseenkoet al. @12# is more appropriate. Therefore, we
impose the following second-order self-similar profile ofu
as

u5
3q

h F S zhD2
1

2 S zhD
2G2

f h

2 F S zhD2
3

2 S zhD
2G , ~19!

wheref (x,t) is an unknown correlation function. This veloc-
ity profile satisfies the no-slip condition at the solid boundary
anduz5 f (x,t) at the free surface. Applying the continuity
equation and Eq.~19!, Eq. ~14! becomes

f54Gxhhx14Lxh
2hx1

1
2Gxxh

21 1
3Lxxh

3, ~20!

where G53qh2220.5f and L521.5qh2310.75f h23.
Equation~20! represents the nonlinear shear stress equilib-
rium relation at the interface and the unknown functionf
correlates toh and q in the rupture process. Furthermore,
integrating Eq.~11! over the film and applying the other
boundary conditions, one can obtain the averaged
x-momentum equation as

qt1~ 1
3G

2h31 1
2GLh

42 1
5L

2h5!x

53Shhxxx13Ah23hx23qh221 3
2 f1

1
2Gxxh

2

1 1
3Lxxh

312h~Gh!xx12h~Lh2!xx1$ 1
8Gxth

4

1 1
15Lxth

52 1
2Gxh

22 2
3Lxh

31 1
10 @~GGx!x

22Gx
2#h51 1

36 @3~LGx!12~GLx!x210GxLx#h
6

1 1
21 @~LLx!x22Lx

2#h7%x . ~21!

Equations~18!, ~20!, and~21! are the coupled nonlinear evo-
lution equations about the film thicknessh, local flow rateq,
and the correlation functionf , respectively. Here, Eqs.~18!,
~20!, and ~21! are referred to as the SNE. If one derives an
evolution equation to retain the physical effects up toO~e6!
by a long-wave expansion method@8#, it will contain most of
the high-order viscous dissipation effects included in the
SNE. However, this equation will be too complicated to ana-
lyze either numerically or analytically.

The nonlinear rupture process of the system is revealed
first by solving the SNE numerically. Equations are dis-
cretized by using the finite difference method. Center differ-
ences are applied in space while the Crank-Nicolson rule is
used for time. The calculation domain is fixed in the interval
0<x<2p/km , wherekm is the wave number on which the
linear maximum growth rate is achieved. The periodic
boundary conditions are considered in this problem. The
initial-value conditions are

h~x,0!511H0coskmx, 0<x<2p/km , ~22!
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q~x,0!52
vm

km
H0sin kmx, 0<x<2p/km , ~23!

wherevm is the linear maximum growth rate andH0 is the
initial disturbance. The initial condition forf is obtained by
solving the discretized system of Eq.~23! with the initial
conditions of h and q. The Newton-Raphson iteration
method is introduced to calculate the difference equations
and the convergent tolerance is around 1025. In the cases
mentioned below, the initial disturbanceH0 is 0.25.

Figure 2 displays the nonlinear rupture processes pre-
dicted by the WDE, CHE, and SNE, respectively, with dif-
ferent values ofA; hmin is the minimum film thickness during
the rupture process. One can observe that the rupture process
is accelerated when thehmin approaches the solid boundary.
It is also shown that the rupture process predicted by the
SNE is faster than that predicted by WDE but slower than
that predicted by CHE. It is clear that the inertia of
x-momentum equations will accelerate the rupture process
while the high-order viscous dissipation effects will reduce
this acceleration. This tendency is also shown in Fig. 3. Fig-
ure 3 shows the rupture times vsA of three models for
S50.1. The rupture time predicted by the WDE~CHE! is
longer ~shorter! than that predicted by the SNE by about
24% ~26%! in the case ofS50.1,A50.000 15, while in the
case ofS50.1 andA50.000 05 the difference is about 24%
~36%!. For the large difference in the predicted rupture
times, one can say that the high-order viscous dissipation
consumes some energy that is used to make the film rupture,
and is not negligible in modeling the film rupture process. In
the meantime, the larger the value ofA, the shorter the rup-
ture time predicted by the nonlinear analysis. That is, the
film tends to be unstable as the effect of VDWP is enlarged.
This phenomenon can also be shown by Eq.~8!. The neutral
state, or cutoff wave numberkc of the system is increased
with the A value being increased. The larger thekc value

means the stronger the destability of the system. On the con-
trary, thekc is decreased with theS value increasing, and the
system tends to be stable.

In summary, it is concluded that VDWP and the inertia of
x-momentum equations are the unstable factors, while the
surface tension and high-order viscous dissipation are the
stable factors for the instability of the film. They are all
important in the simulation of rupture processes of thin liq-
uid films. It is noticeable that the modified Navier-Stokes
equations may not be a valid model when the film becomes
exceedingly thin, in which case the film is no longer New-
tonian @8#.
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APPENDIX

The base states of Eqs.~1!–~7! are

ū50, w̄50, h̄51.

We assume the perturbation of the velocity vector (u8,w8),
the pressurep8, and the height of free surfaceh8 have the
form

~u8,w8,p8,h8!5@ û~z!,ŵ~z!,p̂~z!,a#exp~vt1 ikx!,
~A1!

wherek is the wave number andv is the complex charac-
teristic value.

Taking Eq. ~A1! into account, the linearized governing
equations can be conveniently reduced to a single Orr-
Sommerfeld equation forŵ(z):

@D42~2k21v!D21k2~k21v!#ŵ50, ~A2!

FIG. 2. The minimum film thickness,hmin , versus time for
S50.1 andA50.000 05: —, SNE; ––, WDE; ---, CHE.

FIG. 3. Nonlinear rupture time versusA of three models for
S50.1: —, SNE; ––, WDE; ---, CHE.
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and the boundary conditions~4!–~7! become

ŵ5Dŵ50 ~at z50!, ~A3!

ŵ5av ~at z51!, ~A4!

~D21k2!ŵ50 ~at z51!, ~A5!

@D32~3k21v!D13k2v21~A2Sk2!#ŵ50 ~at z51!,
~A6!

whereD denotesd/dz.
After calculating the solution of Eq.~A9! with boundary

conditions~A3!–~A6!, the secular determinant would lead to
a relation among the parameters in the following form:

F~v,k,A,S!52b1b2~4k
412k2v!

1k2~8k418k2v1v2!sin b1 sin b2

23k2b2~A2Sk2!sin b1 cosb2

2b1b2~8k
414k2v1v2!cosb1 cosb2

13k2b1~A2Sk2!cosb1 sin b250, ~A7!

whereb1
252~k21v! andb2

252k2. The neutral state of the
system implies that the real part ofv is zero, and from Eq.
~A7! it is easy to find the cutoff wave number shown in Eq.
~8!.
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