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Strong nonlinear dynamic rupture theory of thin liquid films
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This research studies the strong nonlinear rupture phenomena of a thin liquid film on a horizontal plane. The
strong nonlinear evolution equations are obtained by themiga-Polhausen integral method with a specified
velocity profile. These evolution equations are used to investigate the rupture process for liquid films. The
numerical results show that although the inertia accelerates the rupture process explicitly, the high-order
viscous dissipation reduces this acceleratj&@1.063-651X96)04709-5

PACS numbe(s): 66.60:+a, 68.15+e, 02.60.Cb, 02.70.Bf

Research of the rupture of a thin liquid film has been Wi+ UWy +WW,= — Py~ @+ Wyy+ W, 5, 2
motivated by industrial applications in disperse and, colloid
systems on the one hand, and an understanding of diverse Uy +W,=0, ©)

biological implications on the oth¢d—3]. A liquid layer on

a solid substrate may be unstable when the thickness of thémultaneously with the boundary conditions:
layer becomes very thirf100-1000 A. To explain the atz=h,

mechanism of the instability of a thin liquid film, Sheludko

[4] proposed an idea of the negative disjoining pressure in- (uz+wx)—4uxhx(1—h§)‘1=0, 4
duced by the long-range molecular forces due to the van der

Waals potentia(VDWP). In the case of a thin film on a solid —p+2[(1— h>2<)Wz_ hy(u,+wy) ](1+ hf()—l
substrate, the critical wavelength and the linear rupture time

of the thin film, which are related to the surface tension and =3Sh,(1+h2)7%2 (5)

the van der Waals potential, can be obtained by the hydro-
dynamic stability theory5—7]. Williams and Davig8], Bu-  atz=0,
relbachet al. [9] and Hwanget al. [10] analyzed the long-
wave nonlinear dynamic rupture of film on a plate. They u=w=0, (6)
found that the nonlinearity accelerates the rupture process. ) . . .
Furthermore, Chen and Hwafigl] indicated that the inertial a_nd also with the kinematic condition at the free surface
effect of the longitudinal momentum equation acceleratedVen by
the rupture process explicitly.

In the research mentioned above, some high-order terms
in the governing equations and the boundary conditions arg,

nteglected. I_Howeverz (tjhe?eihtermst are expl;:ét ?urltr;]g th&focity, the z-component velocity, and pressure, respectively,
strong tnon 'Eetir pe:jlo ?c e r.Lth dure fprocs r]] n |eff %\nd the subscripts represent partial derivatives. The attractive
present work, theé order of magnitude or €ach physical ellect,,, yer \waals forces are obtained through the potential func-

is estimated and the reduced governing equations are Otﬂ'onqb which depends on the film thicknessés Ah~3. The
tained. Sequentially, the integral methgt2,13 is used to dimer{sionless parameters\ and S are defined as
derive a system of strong nonlinear evolution equations.

Then the numerical results of the evolution equations are
compared with the Williams and Davis’s equatioV§DE) Zw
[10] and Chen and Hwang's equatio(@HE) [11].

A planar thin liquid film on a horizontal plane is shown
schematically in Fig. 1. The liquid is assumed to be a New- =
tonian viscous fluid with kinematic viscosity and constant
density p. It is also assumed that the liquid film discussed
here is thin enough to neglect the gravity effect and only the
effect of VDWP is considered. By scaling the coordinate by
the equilibrium thickneshy, time byh?3/v, velocity by v/h,
and pressure by1?/h3, the modified Navier-Stokes equa-
tions are given by7]

he+uh,=w, (7)

hereu, w, andp are the dimensionless-component ve-

Up+UUy+ WU, = — Py— dyt Uyyt+ Uy, (1) FIG. 1. The physical model of a thin liquid film.
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A=A'/(6mhopr?) andS=hya/(3pv?), whereA’ is the di- 9 (h
mensional Hamaker constant, ands the dimensional sur- het = J udz=h+0,=0, (18)
face tension. 0

After solving the linear stability problem of Eq&l)—(7)
(please refer to the Appendix for detajl®ne can find the
neutral state of the system that occurs at the cutoff wav
number as

where q is the local flow rate. A specific profile must be
imposed in the integral method. For a highly turbulent flow,
a flat profile is usually assumed. However, for the flow of
interest here, a parabolic profile established experimentally

fh

> . (19

A\ /12 by Alekseenkeet al.[12] is more appropriate. Therefore, we

) (8) impose the following second-order self-similar profile wof

as

It is clear that only disturbances with wave numbers below

the cutoff wave number are unstable. Since the real orders of _3aj(z) 1(z ? z)y 3|z 2

magnitude ofA andS are smal[8,9], some high-order terms “hllh T2 0h h/ 21\h

in the governing equations and the boundary conditions must

be concluded in the reduced system in which we expect tgvheref(x,t) is an unknown correlation function. This veloc-

takeA andSinto consideration. We assume that the order ofity profile satisfies the no-slip condition at the solid boundary

magnitude ofA andS areS=0(e) andA=0(e*), wheree  andu,=f(x,t) at the free surface. Applying the continuity

is a relatively small parameter. Introducing the above twoequation and Eq(19), Eq. (14) becomes

dimensionless parameters into E§), the order of unstable

wave numbek can be represented as f=4G,hh+4Lh2h,+ 1G,h2+ IL,,h3, (20)
k=0(€e?). 9

where G=3qh ?-0.5f and L=-1.5q0h"3+0.75h"3.

The orders of other dimensionless variables are given b _quation(20) represents the nonlinear shear stress equilib-

[8,9] ium relation at the interface and the unknown function
' correlates toh and q in the rupture process. Furthermore,
u=0(1), w=0(k), p=0(k™1, integrating Eq.(11) over the film and applying the other
boundary conditions, one can obtain the averaged

x=0(k™Y), z=0(1), t=0(k™b. (10)  X-momentum equation as

Introducing Egs(9) and (10) into Egs.(1)—(7) and neglect- o+ (3G%h3+1GLh*—EL2hD),

ing the higher terms of order higher th&r(€®), the reduced

equations of motion and the pertinent boundary conditions =3Shhy,+3Ah™3h,—3gh 2+ §f+;G,,h?

can be derived as follows:
+ 3L, 3+ 2h(Gh), + 2h(Lh?),, +{3G,h*

Ug+ UUy+ WU, = — Py— dy+ Uyt Uy, 11
i L Gl 4 +1#5Lih°— 3G,h? = SL,h3+ H[(GG,),
Wi+ UW, + WW,= — P+ Wy, (12 —2G21h5+ %[ 3(LG,) +2(GL,),— 10G,L,]h®
Uyt W, =0; (13 + 31 (LLy)x— 2L . (2D
atz=h, Equations(18), (20), and(21) are the coupled nonlinear evo-
U= AUho— W (14) lution equations about the film thicknelsslocal flow rateq,
z XX T and the correlation functiof, respectively. Here, Eq$18),
L _ (20), and(21) are referred to as the SNE. If one derives an
P~ 3Sha=2uct2uzhy, (19 evolution equation to retain the physical effects upia®)
ho+ Uh=w- (16) by a long-wave expansion methffl], it will contain most of
t x the high-order viscous dissipation effects included in the
and atz=0 SNE. However, this equation will be too complicated to ana-

lyze either numerically or analytically.
u=w=0. (17) The nonlinear rupture process of the system is revealed
first by solving the SNE numerically. Equations are dis-
The high-order viscous dissipation terms are the normatretized by using the finite difference method. Center differ-
stress in x-momentum equations, shear stress inences are applied in space while the Crank-Nicolson rule is
z-momentum equations, and the interfacial shear and normaised for time. The calculation domain is fixed in the interval
stress on the right-hand side of the dynamic boundary cor@<x=<2=/k,,, wherek,, is the wave number on which the
ditions [(14) and (15)] that are caused by a large interface linear maximum growth rate is achieved. The periodic
deformation. The above high-order terms become importarftoundary conditions are considered in this problem. The
as the rupture process reaches the nonlinear stage. initial-value conditions are
One can obtain the mass balance relationship by rewriting
Eqg. (16) as h(x,00=1+Hgcosk,x, 0=x<2wu/k, (22
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_FIG' 2. T_he minim.um film thi.cknesshmmj versus time for FIG. 3. Nonlinear rupture time versus of three models for
S=0.1 andA=0.000 05: —, SNE; ——, WDE; ---, CHE. S=0.1: — SNE: ——, WDE: —, CHE.
Om means the stronger the destability of the system. On the con-

q(x,0)= =1~ HosinkyX, 0<x<2m/kn, (23)  trary, thek, is decreased with th® value increasing, and the
" system tends to be stable.

In summary, it is concluded that VDWP and the inertia of
X-momentum equations are the unstable factors, while the
surface tension and high-order viscous dissipation are the
stable factors for the instability of the film. They are all
important in the simulation of rupture processes of thin lig-
and the convergent tolerance is around 0n the cases Tid films. It is noticeable that the modified Navier-Stokes

equations may not be a valid model when the film becomes

men'tloned bel_ow, the initial d|§turbantq) s 0.25. exceedingly thin, in which case the film is no longer New-
Figure 2 displays the nonlinear rupture processes pret'onian[S]

dicted by the WDE, CHE, and SNE, respectively, with dif-

ferent values of\; hy, is the minimum film thickness during  The authors wish to acknowledge with appreciation the
the rupture process. One can observe that the rupture procefisancial supportGrant No. NSC 82-0401-E033-02@ro-

is accelerated when tHe,;, approaches the solid boundary. vided by the National Science Council of the Republic of
It is also shown that the rupture process predicted by thehina.

SNE is faster than that predicted by WDE but slower than

that predicted by CHE. It is clear that the inertia of APPENDIX

X-momentum equations will accelerate the rupture process

while the high-order viscous dissipation effects will reduce The base states of Eqd)—(7) are

this acceleration. This tendency is also shown in Fig. 3. Fig- o o —

ure 3 shows the rupture times Vs of three models for u=0, w=0, h=1

S=0.1. The rupture time predicted by the WOEHE) is ) ) ,
longer (shortey than that predicted by the SNE by about W& assume t/he perturbation of the velocity vectof,w’),
24% (26%) in the case 06=0.1, A=0.000 15, while in the the pressurg’, and the height of free surfad€ have the
case 0fS=0.1 andA=0.000 05 the difference is about 24% fOrm

(36%). For the large difference in the predicted rupture P ~ A :

times, one can say that the high-order viscous dissipation (u’,w’,p’.h )—[u(z),w(z),p(z),a]exp(wt+|kx),(A1)
consumes some energy that is used to make the film rupture,

and is not negligible in modeling the film rupture process. Inwherek is the wave number ana is the complex charac-
the meantime, the larger the valueAfthe shorter the rup- teristic value.

ture time predicted by the nonlinear analysis. That is, the Taking Eq. (A1) into account, the linearized governing
film tends to be unstable as the effect of VDWP is enlargedequations can be conveniently reduced to a single Orr-
This phenomenon can also be shown by @). The neutral  Sommerfeld equation fol(z):

state, or cutoff wave numbdy, of the system is increased

with the A value being increased. The larger tke value [D*—(2k?+ w)D%+k?(k?+ w)]w=0, (A2)

where w,, is the linear maximum growth rate amtl, is the
initial disturbance. The initial condition fdk is obtained by
solving the discretized system of E®3) with the initial
conditions of h and g. The Newton-Raphson iteration
method is introduced to calculate the difference equation
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and the boundary conditior{g)—(7) become Flw,k,A,S) =281 B,(4k*+ 2k?w)
w=Dw=0 (at z=0), (A3) + k?(8k*+ 8k?w+ w?)sin B sin B,
w=aw (at z=1), (A4) —3k?B,(A—SIK)sin B, cos B,
(D2+K2)W=0 (at z=1), (A5) — B1B2(8k*+ 4k w+ w?)cos B, cos B,
[D3—(3k?+ w)D +3k20 Y A—SK)]W=0 (at z=1), +3k2B,(A—SIK)cos B, sin B,=0, (A7)
(A6)
whereD denotesd/dz. where 2= —(k?+w) and B5=—k2 The neutral state of the

After calculating the solution of EqA9) with boundary  system implies that the real part efis zero, and from Eq.
conditions(A3)—(A6), the secular determinant would lead to (A7) it is easy to find the cutoff wave number shown in Eq.
a relation among the parameters in the following form: (8).
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